Deep reinforcement learning hands - on : | Maxin lapan Apply moder RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more /
Lapan, Maxin
Deep reinforcement learning hands - on : Maxin lapan Apply moder RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / - 2 - Reino Unido : Packt Publishing, 2020 - 798 páginas : il. ; 19 x 24 cm.
Incluye indice
Perface -- Chapter 1 : What is reinforcement learning ? -- Chapter 2 : OpenAL Gym -- Chapter 3: Deep learning with pytorch -- Chapter 4: The cross-Entropy Method -- Chapter 5 : Tabular learning and the bellman equation -- Chapter 6: Deep Q- Networks -- Chapter 7: Higher- level RL libraries -- Chapters 8: DQN extensions -- Chapter 9: Ways to speed up RL -- Chapter 10: Stock traing using RL -- Chapter 11: Policy grandients -an alternative -- Chapter 12: The actor - Critic Method -- Chapter 13: Asynchronous advantage actor - critic -- Chapter 14: Training chatbots with RL -- Chapter 15: : The texworld enviroment -- Chapter 16: Web navigation -- Chapter 17: Continuous action space -- Chapter 18: RL in robotics -- Chapter 19: Trus regions - PPO, TRPO, ACKT, and SAC -- Chapter 20: Black - box optimization in RL -- Chapter 21 Advanced exploration -- Chapter 22: Beyond model - free - imagination -- Chapter 23: AlphaGo zero -- Chapter 24: RL indiscrete optimization -- Chapter 25: Multi- agent RL.
978-1-83882-6999-4 (Pasta rústica)
APRENDIZAJE PROFUNDO ( APRENDIZAJE AUTOMÁTICO)
APRENDIZAJE AUTOMÁTICO (INTELIGENCIA ARTIFICIAL)
INGENIERIA DE SOFTWARE
PROCEDIMIENTO DE LENGUAJE NATURAL ( COMPUTADORES)
006.31 L299d 2020
Deep reinforcement learning hands - on : Maxin lapan Apply moder RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / - 2 - Reino Unido : Packt Publishing, 2020 - 798 páginas : il. ; 19 x 24 cm.
Incluye indice
Perface -- Chapter 1 : What is reinforcement learning ? -- Chapter 2 : OpenAL Gym -- Chapter 3: Deep learning with pytorch -- Chapter 4: The cross-Entropy Method -- Chapter 5 : Tabular learning and the bellman equation -- Chapter 6: Deep Q- Networks -- Chapter 7: Higher- level RL libraries -- Chapters 8: DQN extensions -- Chapter 9: Ways to speed up RL -- Chapter 10: Stock traing using RL -- Chapter 11: Policy grandients -an alternative -- Chapter 12: The actor - Critic Method -- Chapter 13: Asynchronous advantage actor - critic -- Chapter 14: Training chatbots with RL -- Chapter 15: : The texworld enviroment -- Chapter 16: Web navigation -- Chapter 17: Continuous action space -- Chapter 18: RL in robotics -- Chapter 19: Trus regions - PPO, TRPO, ACKT, and SAC -- Chapter 20: Black - box optimization in RL -- Chapter 21 Advanced exploration -- Chapter 22: Beyond model - free - imagination -- Chapter 23: AlphaGo zero -- Chapter 24: RL indiscrete optimization -- Chapter 25: Multi- agent RL.
978-1-83882-6999-4 (Pasta rústica)
APRENDIZAJE PROFUNDO ( APRENDIZAJE AUTOMÁTICO)
APRENDIZAJE AUTOMÁTICO (INTELIGENCIA ARTIFICIAL)
INGENIERIA DE SOFTWARE
PROCEDIMIENTO DE LENGUAJE NATURAL ( COMPUTADORES)
006.31 L299d 2020