Deep Learning / Ian Goodfellow, Yoshua Bengio, Aaron Courville
Material type:
- 978-0-262-03561-3 (Pasta dura)
- 006.31 G651d 2016
Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
Unicomfacauca | Acervo general de Libros | Available | T05468 |
Incluye índice
Applied math and machine learning basics. -- Linear algebra. -- Probability and information theory. -- Numerical Computation. -- Machine learning basics. -- Deep netwoks: modern practices. -- Regularization for deep learning. -- Optimization for training deep models. -- Convolutional Networks. -- Sequuence modeling: recurrent and recursive nets. -- Practical methodology. -- Applications. -- Deep learning research. -- Lineal factor models. -- Autoencoders. -- Representation learning. -- Structured probabilistic models for deep learning. -- Monte carlo methods. -- Confronting the partition fuction. -- Aproximate interference. -- Deep Generative models.
There are no comments on this title.