Image from OpenLibrary

Deep reinforcement learning hands - on : Maxin lapan Apply moder RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more /

By: Material type: TextTextPublication details: Reino Unido : Packt Publishing, 2020Edition: 2Description: 798 páginas : il. ; 19 x 24 cmISBN:
  • 978-1-83882-6999-4 (Pasta rústica)
Subject(s): DDC classification:
  • 006.31 L299d 2020
Contents:
Perface -- Chapter 1 : What is reinforcement learning ? -- Chapter 2 : OpenAL Gym -- Chapter 3: Deep learning with pytorch -- Chapter 4: The cross-Entropy Method -- Chapter 5 : Tabular learning and the bellman equation -- Chapter 6: Deep Q- Networks -- Chapter 7: Higher- level RL libraries -- Chapters 8: DQN extensions -- Chapter 9: Ways to speed up RL -- Chapter 10: Stock traing using RL -- Chapter 11: Policy grandients -an alternative -- Chapter 12: The actor - Critic Method -- Chapter 13: Asynchronous advantage actor - critic -- Chapter 14: Training chatbots with RL -- Chapter 15: : The texworld enviroment -- Chapter 16: Web navigation -- Chapter 17: Continuous action space -- Chapter 18: RL in robotics -- Chapter 19: Trus regions - PPO, TRPO, ACKT, and SAC -- Chapter 20: Black - box optimization in RL -- Chapter 21 Advanced exploration -- Chapter 22: Beyond model - free - imagination -- Chapter 23: AlphaGo zero -- Chapter 24: RL indiscrete optimization -- Chapter 25: Multi- agent RL.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libro Libro Unicomfacauca Acervo general de Libros Available T06281
Libro Libro Unicomfacauca Acervo general de Libros Available T06282

Incluye indice

Perface -- Chapter 1 : What is reinforcement learning ? -- Chapter 2 : OpenAL Gym -- Chapter 3: Deep learning with pytorch -- Chapter 4: The cross-Entropy Method -- Chapter 5 : Tabular learning and the bellman equation -- Chapter 6: Deep Q- Networks -- Chapter 7: Higher- level RL libraries -- Chapters 8: DQN extensions -- Chapter 9: Ways to speed up RL -- Chapter 10: Stock traing using RL -- Chapter 11: Policy grandients -an alternative -- Chapter 12: The actor - Critic Method -- Chapter 13: Asynchronous advantage actor - critic -- Chapter 14: Training chatbots with RL -- Chapter 15: : The texworld enviroment -- Chapter 16: Web navigation -- Chapter 17: Continuous action space -- Chapter 18: RL in robotics -- Chapter 19: Trus regions - PPO, TRPO, ACKT, and SAC -- Chapter 20: Black - box optimization in RL -- Chapter 21 Advanced exploration -- Chapter 22: Beyond model - free - imagination -- Chapter 23: AlphaGo zero -- Chapter 24: RL indiscrete optimization -- Chapter 25: Multi- agent RL.

There are no comments on this title.

to post a comment.